Gamma-ray spectroscopy method to measure Ra in matrices relevant to offshore oil and gas operations S. A. Kreek, P. Torretto, F. Bazan, J. Bazan, H. L. Hall Chemistry and Material Sciences Directorate, Lawrence Livermore National Laboratory, P. O. Box 808, L-231, Livermore, CA 94551 ## Abstract: We have developed a gamma-ray spectrometry method to reliably measure ²²⁶Ra and ²²⁸Ra in matrices relevant to offshore oil and gas production operations: biota, produced water (water with extremely high total dissolved solid content), sea sediment, and sea water. For the aqueous matrices, this method employs a fairly simple coprecipitation separation to isolate Ra from the bulk matrix. The ²²⁶Ra and ²²⁸Ra radioactivities are measured with a high-purity Ge detector via detection of the ²¹⁴Pb/²¹⁴Bi and ²²⁸Ac daughter activities, respectively. This method is sensitive to both ²²⁶Ra and ²²⁸Ra at levels better than about 0.01 pCi/g. To achieve the best sensitivity for ²²⁶Ra, a 15 - 20 day ingrowth period is required for the ²²⁶Ra daughters to achieve equilibrium. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No.W-7405-Eng-48.